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ABSTRACT 

By means  of elementary properties of  the absolute value 
function,   important  properties  of a special class of 
"constrained generalized median" problems   (and eventually, 
the most general class,  vide Charnes,  Cooper,   Thompson) 
such as existence  of solutions,   gradient and  incremented 
formulae,   linear programming and probabilistic  interpre- 
tations  are obtained  for all classes  of  joint distribution 
functions  for which  the problems make sense.     Results of 
A.  C. Williams and R.  Wets obtained by  involved arguments 
and sophisticated constructs appear,  when corrected,  as 
special instances of some of the above results but devoid 
of  the interrelations  and interpretations herein adduced. 

ii 



1.   Introduction 

Recently the SLAM Journal has published two papers [l, 8] which present 

elaborate classifications and sophisticated constructions for two classes of 

problems in probabilistic programming.   Neither the authors of these papers, 

nor their referees, appear to have recognized that the problem in [l] and the 

problems in [8] (for ejcample, the "complete" problem) are very special in- 

stances of the class of "constrained generalized median" problems first diocus^ 

by Charnes, Cooper and Thompson in 1961.~    This canonical "median" formuU 

tion is not a matter of a choice of nomenclature.   Its technical advantage in mar. 

problems in probabilistic programming derives from bringing into immediate 

focus the relevance of the absolute value function. 

As we shall demonstrate below by means of the absolute value function we 

easily (1) obtain, characterize and markedly extend the essential results of [l], 

(2) interpret these results in linear programming and probabilistic terms, (3) 

develop gradients and directional derivatives and interpret probabilistically 

incremental formulae in all generality, (4) place these results in the framework 

of chance-constrained programming, and (5) reduce all cases to investigation of 

the behavior of the objective function along a ray. 

Before undertaking these developments and in order   not to interrupt them 

some important assertions and constructions in [l] require correction.    The 

problem in [l] is to choose a vector      X > 0 which maximizes the expected 

T        m 

value of the function  p   X +   S g. (X.b), 
1=1 

■=•'   See reference   [4] 



where 
r(bi - a^) Yi if    b    - a^ < .; 

(1) g^X.b) - 1 
/ (b1 - a^) 61 if    b^^ - a^ > 0, 

and Y* > ^i« 

Here        a ii.>*l...mt   is the i  row of a  given mxn matrix A, 

y.  and i   timl.,,mt    are given constants, 

T p  is a given Ixn vector, 

and b. ,i>l,... ,in, are random variables whose marginal distributions 

are known. 

Thus the problem is 

T   m 
max E(pTX + I g.CX.b)) 

i-1 1 

(2) subject to X > 0, 

where we compute the expectation using the joint distribution of the random vari- 

ables b..... .b . 
1'  * m 

In (2), it is assumed that the vector X is to be selected before any ob- 

servations are made on the random variables b. ji^l,... ,m. Thus X is not per- 

mitted to be a function of these random variables, but rather it must be a determin- 

istic vector. Such a vector of decision rules is called a zero order decision rule 

in the customary terminology of chance-constrained programming.—  Thus, (2) is a 

chance-constrained programming problem in which the chance constraints are of the 

particularly simple form P(X > 0) > 1, in which the function whose expectation 

we wish to maximize is a piecewise linear function of the vector of decision rules, 

and in which we seek the optimal zero order rule. 

1/ — For results on zero order rules see references [2, 3, A, 5, 6], 
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In the mathematical development presented in section 2, we first show that 

(2) can be converted into a constrained generalized median problem of the type 

discussed in (4]. This transformation enables us to use standard linear program

ming methods in obtaining our results. It also permits us to indicate how these 

results can be extended in two important directions: one is the case in which 

is a piecewise linear function of , •• . ,b 
m 

rather than only 

as it is in (1); the other is the case in which X is subjected ' to other linear 

constraints, say DX ~ d, in addition to the constraints X~ 0. Neither of 

these extensions are discussed in (1], and the techniques used in (1] cannot be 

readily extended to include these cases. 

The main results in [1] are a pair of theorems which give necessary and 

sufficient conditions for the existence of an optimal solution to (2).- We will 

obtain most of these conditions in a much more direct manner than was used in 

[1). In particular, our proofs will require only well-known theorems in linear 

programming and some elementary inequalities on the absolute value, and will not 

require concepts such as Kakutani's fixed point theorem which were used in (1]. 

Neither will we require the elaborate specifications and restrictions of the 

classes of probability distributions as used in [l j . 

One result obtained in (lJ characterizes the situation in which the objective 

function of (2) is bounded from above, but the supremum of the function is not 

attained for .a finite X. Rather than deriving this particular result, we character-

ize this situation in a constructive way by showing that it can be related to 

the behavior of the objective function along a particular ray and by obtaining an 

exp licit expression for its limiting value. 
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First, however, we must correct some assertions in [l] about the admissible 

class of random variables. In [l] it ·is assumed that Fi, the cumulative dis

tribution function of bi' has at most a finite number of discontinuities in 
I 

each finite interval. In our development in section 2 it will be clear that sucq 

an assumption is never required~ when differentialability is not the main · focus. 

We can, for example , admit random v.ariab.les whose distribution function has pro-

bability mass at ~ 11 the irrational poi~ts in an interval (or on the real line), 

It is also assumed in [1] that Fi(•),i•l, •.• m, satisfies the following con

ditions: 

and 

3(a) lim ziFi(zi) • 0, 
zr-CJ) 

A remark is then made [1, p. 930] to the effect that 3(a) and 3(b) are ."sufficient 

for (but slightly stronger than) the existence of the first moment of Fi(•)," 

In actual fact, as we prove in theorem 2,3(a) and 3(b) are necessary for the exist-

ence of the first moment of Fi(•), but they are not sufficient. This can be 

seen by the following example: 

Let F(z) = 

Then 

and 

lim z--• zF(z) = 

z > - e 

z <- e 

lim 
Z~O) 

z!!~ z[l-F(z)] • 0, as F(z) • l for z ~ - e 

Hence F(z) satisfies conditions 3(a) and 3(b). However, F(z) does not have a 
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first moment since 

-· ( ) J zdF(z) • e J l+ln(-z) d 
z 2 2 z - -• z [ln(-z)J 

• l+ln~z) 
eJ dz . - 2 • z[ln(z)) 

• 1 + e [ ln(ln(e)) .~ .... [ln(ln(t)~J . -eJ 2 dz 
e z[ln(z)J 

. -.. since the integral term is negative and lim~(ln(ln(t))] • •· t-,.. Thus E(z) 

does not exist. 

Conditions 3(a) and 3(b) are used repeatedly in (1) to guarantee that the in-

tegration by parts formula 

X X 

J Fi(z) dz • xFi(x) - z~-~ zFi(z) - J zdFi(z) -- -· 
is valid. But the above example shows that conditions 3(a) and 3(b) are ~ suf-

ficient to guarantee the validity of thi.s integration formula since both integrals 

diverge . On the other hand, the existence of E(z) is certainly a sufficient 

condition for the formula to be meaningful. 

2. Mathematical Development 

We begin by introducing some notation. Let Y be ann-vector. 

Then ... ' 
and 

. . . ' Ejy I) . 
n 

We will use jjYjj to denote the norm of Y. 



From the definition of g.(X^b) In (1) we have that 
6. 

g^X, b) - ji (|b1 - a^l + (b1 - .^X)^ ^ ^(b1 - a^) - |b1 - aM) • 

Hence 

E 

and 

nee 

(gt(x> b)) .(142.) E(v . (14^) A + (!^) Elbi. ^ 

Ef F^X + Z SiCX, b) ) - i^X + 

+  P 

Thus, dropping the constant term       £   {  )E(b.)    from the objective function, 
1-1 \      z       /       1 

(2) can be written as 

T„  .    T, 
(4) 

where 

and 

mln    h(X) - c X + a E|b - Ax| 

subject to    X ^ 0 

m  /'öi + Yi 
J      TA       2       /^j * Pj» J " L  •••. n. c, -   S 

i-I 

Yl-fil 
t     1 « 1,   .••tm. 

Also    a. > 0   as we are given that    y   ^ ^ • 

(4)  is a constrained generalized median problem of the type discussed in [4]. 

The constraints are of the particularly simple  form   X > 0. 
We  first note that 

Theorem 1;    h(X)   is  finite  for some X > 0,   in which case 

h(X)    is finite  for all    X > 0,    if and only if    E|b |   < 00     for 

all    1    such that    a    > 0    (i.e.    y   > 6 ). 

Proof: Using the well-known and elementary  inequalities on the absolute value 

we have that 

+ AX   ? b    < |AX| - |b| < |b - AX|   < |b|  + |AX| 
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. . 
aDd so applyina the expected value operator (vbich is order- pre-

servina) to both sides of the inequalities we aet 

This establishes the sufficiency and necessity of the stated 

conditions: 

Theorem 2: A necessary condition for Efbij < oo is that 

~: Let 

Then 

tP ~ fbif ~ t~ • 0. 

Xt·)l. (bif~t 
l o. fbil > t 

EJbif • E((bif ~) + r{lbij (1 - ~)) · 
But by definition of the Lebesgue-Stieltjcs (or Radon) integral, 

Ejbif • lim E(jb1 j~) when Elb1f <CD • 
t+oo 

Thus E (I b 1 I (1 - xt)) ~ 0 as t ~ Cl) • 

But · E(fb1((1 - xt)) • jtfb1fdr 1(b1) ~ tP!(b1f ~ tJ ~ 0 for t ~ 0. 

So when Efb1J < CX) we have tPtfb1f. ~ tJ~o as t~oo . 
To see that the condition 

is equivalent to J(a) and J(b), note that 

P f fb1( ~ t} • P(b1 ~ t) + P(b1 ~ ~-t) • 1- r1(t) + F1(- t), 

Hence we have 0 • lim (t(l- r 1(t)) + tF1(- t)) , 
t-+cll 

and since F 1 ( ) 11 a nonnegative function, J(a) and J(b) immediate-

ly result. 
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Theorem 3: h(X) is bounded from below for all X ~ 0 if and only if there 

Proof: 

exi1t1 a w 1ati1fying 

lwl ~a 
T T w A + c 2:, 0. 

By virtue of the inequality 

obtained in the proof of theorem 1, it i1 enough to show that 

cTX + aTIAXI is bounded from below for all X 2:. 0 if and only if 

there exists a w satisfying lwl ~ ~ and wTA + cT 2:. 0. 

(S) 

To do this, we first note that the problem 

min ctx + aTIAXI 

1ubject to X 2:. 0 

can be rewritten in the following linear programming form: 

T . T + • 
min c X + a (Y + Y ) 

+ -subject to Y - Y - AX • 0 

+ -X, Y , Y 2:, 0 • 

The dual to this problem i s 

or 

. T 0 max w • 

IUbject to • WTA ~ cT 

wT ~aT 

T T 
- w ~a 

max wT · 0 

1ubject to wTA + cT 2:. 0 

lwl ~a . 



Since  (5) is consistent  (the origin Is feasible),  the extended dual 

theorem of linear programming  (see [7], vol.  I, p.   190) states that 

the objective function of  (5)  Is ilnite If and only  if there Is a 

feasible solution to Its dual.  I.e.   (6).    Thus the theorem is proved. 

To convert the result of theorem 3 to the corresponding result In [1], we use 

T                                              Yl " 61 it 
our definitions of    c      and   a.    Since    a.   ■  5  »    we see that    (w.|   <a 

ai  " Yi                     Yl  " 61                     ^                           AYi + Sl^ 
means    1     < w4   <    ö  •    1* we Put    ^ " w4 + (    ö  /    »    then the 

condition    (w (   <a    becomes    fi    S ^i £ Y^ •    Similarly, since 

X T        T T T T 
we get that    wA + c    «nA-p,    so    wA + c    >0 

T T 
becomes    n A > p   .    Thus we see that theorem 3 is analogous  to the result  in [1] 

which says that the optimal value of the objective function to   (2) is finite if and 

only if there exists an m-vector    TT    satisfying 

TT A > p 

and Ö < TT < Y • 

We not turn to an elucidation of what  is termed in [l] the "insoluble- 

finlte,, case.    This  is  the situation we mentioned in the  introduction in which 

h(X)    is bounded  from below but  its infimum is now attained  for a  finite    X,     i.e. 

h(X) > inf h(X)    for all    X > 0. 
X>0 

Theorem 4;    As    t->-oo ,    E(b    - tqj r. tq   -  E(b1),  q > 0 

E(bi)  - tq,  q < 0 

ElbJ ,  q - 0. 

where we use the symbol  ^  to mean that the difference between the 

two quantities tends  to zero as     t—>-oo. 

— This  terminology  is  peculiar  since  not  only  is   It  not   insoluble but we  here 
explicitly write  down  the  optimal  value  of  the  objective   function  for 
this  case.     This   ij  done  in  the  corollary  to theorem 4. 
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Proof; Define the function   ^      ■ xt  (^i) "    (l.   b    < tq  . 

( 0»  ^ > tq . 

Then    E|b1 - tq|   - £[(0^  tq)(l  - xtq)]+Et(tq   - b^x^] 

-^(b^   -  2E(bixtqy   + tq[P(b1 < tq)  - P^ ^ tq)]. 

But    E(b xt  )yv(0, q <0      as    t—hco    , 

^(b^,   q > 0 

and the second term on the right approaches    tq    If    q > 0    and 

- tq    If    q < 0,    Thus the theorem is proved. 

Now fix    X    and define    1° =    f 1   : aSc » 0j .    Let    bj - - b    sgn (a1*) 

and    b    -   T b     ,  1 € I    .    Then we have 

Corollary:    As    t~^oo,    h(tX) ^ t[cTX + aT|AX|] + ^[ECb1) + E|b |]. 

Proof; h(tX)  «= tcTX + aTE|b -  tAx| /v tcTX +    Z ^.Elb  | 
161 

+   2 0 a.   sgn  (a1X)[taiX - E(b  )] 

- t[cTX + aT|AX|j + cftECb1) + E|b2|]  . 

Theorem 5:     Suppose that    h(X  )—Mf.     for some sequence      iX   (     with 

X    > 0,    (|x ||—>oo    as    n—^-OD ,    where    vA » inf h(X). 
n -    '    ''  n1' * 0      x>0 

Then    cTY + aT|AY|   = 0    for  some    Y > 0    with     |JY||   = 1. 

Proof; Since the set    S    ;   < X;   | |x| |  = 1, X > 0 (   Is compact, the set 

X 
n 

has a limit point Y in S.. Moreover, there exists some j[x |j f  nas a limit point Y in S. 
n 

subsequence, which we denote by  W v , such that Y—>-Y as 

oo . 
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Now 

  (cTX + aT|AX |)« cTY + aT|AY | -> cTY + aT | AY | as n -> " . 
ii  ^  n     n '    n     n 

T    TI   I However, c X + CL AX  Is bounded from below since h(X ) > v.. 
n     n ^ n'   0 

This follows from the inequality (cTX + aT|Ax|) - aTE|b| < h(X) 

< (cTx'+ CL
T
|AX|) + aTE|b|,  Thus, in particular, cTX + aT|AX | 

remains bounded while Ü X Ii -^00. Hence, from (7), we conclude 
n 

that  the  left hand  side  goes   to zero while c Y + CL   |AY| ^ 0. 

Thus   the   theorem  is  proved. 

Theorem 6: 

A necessary and sufficient  condition that  lim    h(tX)= inf    h(tX)   is   that 
t -f " t -0 

c X + aT |AX|=0. 

Proof:  Assume ||Xli = 1 since the conclusion is trivial for X=0 and 

T    T i  i T    T i  I c X + cc |AX| is positive homogeneous.  Suppose c X + CL |AX| =0. The 

Corollary to Theorm 4 guarantees that 1 im h(tX) = lim t [c X + CL !AX|J+ 
t^ 00 t^ CO 

a^b^+a^lb 1, so that the facts that cTX + CL
T
|AX|=0 and that E|b.|< ^ 

for all i prove that lim h(tX) exists and is finite.  Now suppose that 
t -? 00 

there is a t such that inf h(tX)= h(t X).  Since h(tX) is a convex func- 

tion of t, h(-t X+ ^ tX) ^ ~  [h(t X)+ h(tX)J for all t.  But lim h(tX) = 

lim h(^t x +-^tX) = v , so that v ^ ^ h(t X)+ ^ v , or v ^ h(t X).  Since 
u._
N2o   1 o oz^o'Zo    o  No' 

t-^ 

h(t X)-v by definition of t , we have shown inf h(tX)= h(t X)=v = 
^o'o o ^-^'^o'o 

lim h(tX) when t  exists; if there is no such t  than a fortiori 
t->» o o       

inf h(tX) = Urn h(tX). 
t^0       t^00 

To prove the converse, note that if X = t X for some sequence having 
X 

t ->a3, than —-— = X for all n.  Theorem 5 then immediately yields 
„xjl 

the desired results. 

We cast the following evident observation as a theorem because of 
its practical utility: 
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Theorem 7: inf h(X)   =  inf        inf h(tX) 
X^O lixihi    t^O 

The usefulness  of   this  observation rests  on Theorem 6.     In appli- 

cations   it may happen  that   there  is  only one X with  l|x|| ■  1  for which 

T— T l  "~ I • c X + 0,  |AX|  = 0.     In cases  such  as  this, Tneoremy shows  that  one  can 

approximate  the value  of  v    as  closely  as desired  at  some   finite X by 

considering only  ray minima  for rays   tX with X sufficiently near X   , 

However,   it  should  be  expressly noted   that  these "knife-edge" 

infinite ray cases can never appear as  solutions   to practical problems. 

Rather   they exhibit  an  inadequacy of  realistic   formulation  of  the model 

We  develop  their  properties  here  only  for  completeness of  analysis. 

Wo now turn  to  the  development  of  incremental  formulae  and  their 

interpretation in probabilistic terms.     It should be noted that,   again, 

elementary properties  of   absolute values  quickly  and naturally  lead   to 

results   in all generality. 
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3.    The Increment and the Radial Directional Derivative of    h(X). 

We now give expressions  in terms of the probabilities of the various    b 

versus    AX    events for the Increment of    h(X)    (i.e.,    h(X + ?) - h(X) )    and 

for the directional derivative    -rr h(tX)   whenever the  latter exists.    The ex- 
dt 

pressions are  free of any restrictions as to the character of the distributions 

of the    b. 

First, on inspecting figure  1 below, we note that,  for    e > 0, 
6 , u < a 

f(u)" |u  -  (a+e)|   -  |u -a|=   je + 2(a  -u), a<u<a+6. 
- € , u > a + 6   . 

+6 

- 6 

f(u) 

a+e" u 

Figure 1 

Thus,  if    u    is a random variable with finite expectation, 

EuMu-(a+e)|   -  |u-aM = e[P(u < a+e)  - P(u > a+e)] +   e+2a-2 ^a+eöCe) 

for some    0 < 0(e) < 1    by the mean value theorem.    In other words, 

(8)    Eu('|u-(a+€)|   -  \u-a\)    = 6[P(u < a+e)  - P(u > a+6)  - 2G(6)P(a < u < a+6)]. 

P(a< u < a+e) 
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But 

h(X+5)  - h(X) = cT5 + aTE Mb - AX - A5I   -  |b  - AXM      , 

so If we use  (8) we get, using    P(b > AX)    to denote the vector whose components are 

(9)    h(X+§)  - h(X) « cT5 4- aTD(A5)   I P (   b < A(X + 5)      - P(b > A(X+P)) 

2D  f e  (|A|()    P(AX < b < A(X+5)  ) 

where D(y) denotes the diagonal matrix whose diagonal consists of the components 

of the vector y and where e((A5|) » (©iCla §|), ..., 6 (|am5|))  with 

0 < ©^(l3 §|) 5 1« Thus we have an expression for the increment of h(X), and 

thereby an expression for any possible directional variation, in terms of the 

probabilities of various events. Clearly then, any conditions on the probability 

distributions involved in b which guarantee that P(AX <b < A(X+g))—VO as 

|I?I|—*-0 will guarantee the existence of a gradient of h(X) at X. 

We now specialize (9) as follows: In (9) replace X by tX and 5 by GX. 

Then we get 

h(t+6)X  - h(tX) = cT (GX) + aTD(A6X)   p(b < A(t+e)X J - P ( b > A(t+e)X ) 

-2D ^0(|Aex|)j P ^AtX < b < A(t+6)xJ    = SJc^X + aTD(AX) Ufb < (t+6)AX J 

-PM) > (t+e)AXj   - 20^6(^1) JP^tAX < b < (t+e)AxN\l) . 

Then as    t—KO    we get,   for any  fixed    & > 0, 

/lft.             h r(t+e)X J - h(tX) T     .    T|AV| (10) —i-i ^-i- * L ^ c X + a |AX(   . 

Thus, if the left hand side of (10) has a limit as e,—*-0,    we see that the directional 

derivative -- h(tX) is given by 

(n)   t1-^ dF h(tx) " cTx + ^'^l ' 
It is clear that computational methods can be based on our expressions (9), (10) 

and (11), but we shall reserve these developments for another occasion. 
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A.    Extensions 

The special model treated in [1] is rarely of any real-world or economic- 

theoretical significance because many constraints cannot be expressed adequately 

by "linear" penalty functions.    As a simple reminder, note that    X    must  be 

bounded, although    of course    the specification of the bounds may involve  inter- 

relations between groups  of the  Individual variables.    We have chosen to develop 

our results  for clarity and ease of comparison in the context of  [1].     However, 

it  should be obvious on reflection that  practically all the developments of the 

preceding sections can be extended to the case where  there are additional  linear 

inequality constraints on    X    in  (2). 

For example, consider  the extension of theorem 3 to the case where    X    must 

also satisfy    DX > d.    Then our proof of theorem 3 requires only the  obvious 

modification of the dual  problem.    Thus we get 

Theorem 8;     xf the constraints    DX > d, X > 0    are consistent, the optimal value 

of the objective function for the problem 

mln    cTX + aTE|b - AX| 

subject to    DX > d 

X > 0 

is finite if and only if there exist vectors    w    and    v    satisfying 

-w A + v D < c 

|w|   < a 

v > 0    . 

A much more significant extension of the general model follows from observing 

that the linear constraints DX > d can be considered to be the deterministic 

equivalent constraints for chance constraints P(ÜX < b) > ß. This follows from 
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the fact that since X is a zero order rule, the chance constraints can be re- 

placed by the equivalent set of deterministic constraints  DX < F' (1-J3), where 

F" (1-ß) is the vector of F' (1-ß.),  the  (1-ß.) fractile point of the marginal 

distribution of b.. 

It is also evident that modifying the objective function to the form 

min cTX + E|Gb - Ax|, 

where G is a given mxm matrix, does not affect the proof of our theorems. 

Thus our results hold for the very general class of constrained generalized median 

models discussed in [4J. 

Finally> ^ should be noted that the so-called "complete" problem!./ 0£ 

linear programming under uncertainty is merely another special instance of the 

constrained generalized median problem, and as such falls under our and the previous 
analysis in t4j. 

To see this we merely observe that the"complete"problem can be written as 

T     /m 

min  c X + Ef E g.(x,b) W 
s.t.  D X = d 

X > 0 

where    g (X,b) =      i (^ - aiX)Yi        if    b    - a^ < 0 

(bi  - aiX)6i        if    b^^ - a^ > 0. 

This  formulation is  obtained by expressing the  second stage decision variables 

in terms of the  first   stage decision variables    X. 

^See [8],page 102. 

"Completely slacked" might be more appropriate since 'complete' implies generality 
rather than the speciality actually involved. 
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